
Journal of Engineering Mathematics 49: 19–39, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Water impact of an asymmetric floating wedge
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Abstract. The flow generated during the early stage of the impact of an asymmetric wedge is here investigated,
with the help of a conformal-mapping technique. The wedge is assumed to be initially at rest and floating on a
still free surface of an inviscid and incompressible liquid. The study is aimed at understanding the main features
of the flow that develops in the vicinity of the apex of the wedge. Due to the inviscid-fluid assumption, a velocity
(and pressure) singularity takes place at the apex of asymmetric wedges, which is here removed by reintroducing
viscous effects, in terms of the shedding of a wake from the apex. In the present numerical approach, the wake
is modelled through point vortices, circulations of which are provided via a suitable Kutta condition. Attention
being focused at the early stage of the impact, the free surface is kept during the penetration of the body. This
allows the use of an asymmetric extension of Sedov’s solution to describe the flow field generated by the wedge
entry. Changes induced by the vortical flow on the velocity field and on the pressure distribution on the wedge are
discussed.
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1. Introduction

Water impact is a relevant issue in the naval context. As a matter of fact, hydrodynamic loads
originated during the water entry may have important consequences in terms of dynamic and
structural responses of ships. Beside this rather direct implication, water entry has several
connections with the hydrodynamics of high-speed planing craft, as they emerge by viewing
the flow generated by a planing hull, when it passes through a cross-plane fixed in space. This
aspect is exploited by the so called 2D + t (or 2D + 1/2) approach: studies in this direction
have been carried out in [1–3], for instance. In this context, the importance of the asymmetry,
in terms of the dynamic stability of the planing craft during maneuvering operations, becomes
evident since, depending on the conditions, restoring or capsizing moments can take place.

The water entry of symmetric bodies has been largely investigated in the past, usually
within the framework of a potential-flow assumption, with gravity and surface-tension effects
also neglected. After the pioneering works of von Kármán [4] and Wagner [5], a self-similar
solution for the wedge entry has been derived by Dobrovol’skaya [6]. The flow singularity
at the intersection between the body contour and the free surface made the development of
numerical algorithms rather challenging [7]. To this purpose, more recently, fully nonlinear
numerical solvers have been proposed [8–10] which make use of suitable models in order to
cut off the computational domain the jet induced by the flow singularity. In [11] a similar
model has been employed to compute the flow and the hydrodynamic forces generated during
the impact of two-dimensional and axisymmetric bodies.

An alternative flat-cylinder theory has been proposed by Vorus [12]. In this theory, the
geometry is linearized by satisfying the boundary conditions on the horizontal axis, but the



20 G. Riccardi and A. Iafrati

hydrodynamic nonlinearities are fully retained when enforcing the boundary conditions along
the axis. By using a slender-body approximation, Savander [2] applied Vorus’ theory to the
steady planing problem, in order to recover the pressure distribution on the hull and to identify
the wetted region.

In spite of the above significant advances in the symmetric impact problem, little is un-
derstood about the asymmetric case. The first attempts to solve the potential flow about an
asymmetric wedge date back to Garabedian [13] and Borg [14]. More recently, this problem
has been addressed by Toyama [15] and by Scolan et al. [16]. In [17], the flow generated by the
impact of an asymmetric wedge is numerically solved through a fully nonlinear model. How-
ever, due to the irrotational-flow assumption, all these studies predict a self-similar solution,
with velocity and pressure singularities at the apex of the wedge.

The presence of the geometry singularity makes vorticity production and/or ventilation
rather important. A first attempt to address this problem has been provided by Chekin [18],
who proposed a model which describes the flow generated by an asymmetric-wedge impact
in three different conditions: the flow is attached to the body, the flow is fully detached from
one side and the intermediate case, when a closed cavity is formed about the apex. Recently,
an approach able to deal with similar flow conditions has been proposed by de Divitiis and de
Socio [19]. Therein a limit value of the asymmetry degree is found, beyond which the attached
flow solution does not exist.

The vertical water entry of an asymmetric wedge has been deeply investigated by Xu
[20], who extended Vorus’ theory to account for flow asymmetry. In [3] it is shown that
the dynamic moment is strongly related to the characteristics of the flow on the two sides
and a systematic analysis is performed for large asymmetry, aimed at evaluating the critical
conditions under which a free-surface detachment from the keel can occur. In [21] the same
model has been extended to deal with oblique impact and comparisons with experiments are
established. The occurrence of ventilation, as a consequence of the pressure singularity at the
apex, is investigated when varying wedge geometry and impact velocities.

To gain insights about the main features of the flow field in the vicinity of the wedge apex,
the initial stage of the water entry of an asymmetric wedge is here numerically investigated.
The wedge is assumed to be initially floating, with a finite submergence of the apex, on an
undisturbed liquid surface. The study is carried out within the framework of a potential-flow
approximation of an inviscid, incompressible fluid. Owing to these assumptions, a velocity
singularity takes place at the apex. This singularity is removed by artificially reintroducing
viscous effects in the form of the shedding of a wake from the apex, numerically modelled
through a point-vortex approach [22]. The circulation of each vortex is assigned by enforcing
an unsteady Kutta condition at the apex and the contribution of the point vortices to the
velocity field is computed by using Biot-Savart’s law.

Attention being focused at the flow details close to the apex, only the initial stage of the
water entry is considered here. This assumption allows us to neglect the effects of the free-
surface deformation on the local velocity field and then to use the asymmetric extension of
Sedov’s solution [23], to describe the basic flow field at each step of the penetration. The
motion of the vortices approximating the wake is followed in a Lagrangian way and, at each
time step, a new vortex is introduced in a fixed position, close to the apex and inside the fluid
domain. The circulation of the new vortex is assigned in such a way that the velocity is finite
at the apex of the wedge.

In the following, the original symmetric solution of Sedov is extended to the asymmetric
case. Next, the behaviour of the velocity field about the wedge apex is carefully analyzed and
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Figure 1. Physical plane z = x+i y: the fluid domain
� is in gray, the wetted part of the wedge and the free
surface are indicated by �b and �f , respectively.
The fluid domain is closed by the half cylinder �∞,
at infinity.

Figure 2. Grid in the physical z-plane corresponding
to a Cartesian grid in the ζ -plane, obtained by di-
viding the segments (−0·60, 1·25), (−0·801, 0·001)
along the ξ and η axes in 90 and 50 intervals, re-
spectively. The angles γ1 and γ2 are 20◦ and 50◦,
respectively.

the model adopted for the discretization of the vorticity production is discussed. The model is
then applied to simulate the flow generated by the impact of wedges with different degree of
asymmetry and the effects of asymmetry on the pressure along the wetted part of the wedge
and on the stream function are discussed.

2. Potential flow about an asymmetric floating wedge

2.1. ASYMMETRIC EXTENSION OF SEDOV’S SOLUTION

The velocity field generated by the water entry of an asymmetric wedge is derived here,
within the framework of a potential flow of an inviscid, incompressible fluid. The wedge
is assumed to be initially floating on an undisturbed flat liquid surface, with h0(t) denoting
the submergence of its apex at time t . As shown in Figure 1, the deadrise angles of the right
and the left sides are denoted by γ1 and γ2, respectively. At t = 0 the wedge starts to move
downward with a given entry velocity V (t) = iV (t) (hereafter, bold symbols are used for
vectors, or complex quantities), where V (t) = ḣ0(t) and i = √−1.

Attention being focused on the flow details about the wedge apex during the early stages
of the entry process, the free-surface deformations can be neglected for times t such that
h0(t)/h0(0) � 1. The fluid domain at time t is indicated by �(t) and its boundary ∂�(t)

is composed (see Figure 1) of the wetted body contour �b(t), of the free surface �f (t) and
of the half cylinder �∞, at infinity. It is worth noting that, owing to the above simplifying
assumption, the wetted body contour �b (hereafter, the dependence on time is omitted) and
the free surface �f can be simply derived via geometrical considerations. In particular, with
reference to Figure 2, the right intersection between free surface and body is evaluated as
xc1(t) = h0(t) cot γ1 and the left one as xc2(t) = h0(t) cot γ2, so that the linearized free
surface is �f = (−∞, xc2) ∪ (xc1,+∞).
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The velocity potential φ(x, y; t) is governed by the following boundary-value problem:


∇2φ = 0, in �,

∇φ · ν = −V νy, on �b,

φ = 0, on �f ∪ �∞,

(1)

where ν is a vector normal to the body surface. The solution of the boundary-value problem (1)
is sought, with the help of a conformal-mapping technique, in terms of the complex velocity
potential µ = φ + iψ , where ψ is the stream function. For a symmetric wedge, this boundary-
value problem has already been solved in [23]. In the following, this solution is extended to
the asymmetric case.

In order to solve the boundary-value problem (1), the fluid domain � (in the physical plane
z = x + iy) is mapped onto the lower-half of a ζ -plane, with ζ = ξ + iη and η < 0. Hence,
the physical boundary �b ∪ �f goes onto the real axis ζ = ξ + i0− and the cylinder at infinity
�∞ onto the corresponding one in the ζ -plane. The right and left intersection points between
the wedge and the free surface are mapped onto the points ζ = +1 and ζ = −δ, where δ is a
positive number that depends, in a way which is discussed below, on the two angles γ1 and γ2,
with δ = 1 in the symmetric case. With this map, the free surface �f goes onto the segments
ζ = ξ + i0− with ξ < −δ and ξ > +1, while the wetted part of the wedge boundary �b goes
onto the segment ζ = ξ + i0− with δ < ξ < +1.

The map is built by determining an analytic function g(ζ ), the phase of which, along the
transformed fluid domain boundary ζ = ξ + i0− with −∞ < ξ < +∞, is equal to the phase
of a vector tangent to ∂�, at the corresponding point z(ζ ) [24], so that

g(ζ ) = eiγ1ζ (γ1+γ2)/π (1 − ζ )−γ1/π(δ + ζ )−γ2/π

= |g(ζ )|e−2iγ1ei[γ1(α−θ)+γ2(α−β)]/π,
(2)

where α = arg(ζ ) ∈ [0, 2π), β = arg(ζ + δ) ∈ [0, 2π) and θ = arg(ζ − 1) ∈ [−π, π). In
terms of the function (2), the map can be written as:

z(ζ ) = −ih0 + l1

w

∫ ζ

0
dχg(χ), (3)

where l1 = h0/ sin γ1 is the wetted length of the right side of the wedge and the quantity
w(γ1, γ2) is given by:

w =
∫ 1

0
dξ ξ (γ1+γ2)/π (1 − ξ)−γ1/π(δ + ξ)−γ2/π . (4)

It is worth noting that the mapping function (3) has a similarity behaviour with respect to h0.
In Figure 2, an example of the action of the map (3) on a Cartesian, regular grid in the

ζ -plane is shown. The point ζ = +1 is mapped onto the contact point xc1 between the free
surface and the wedge. Moreover, by enforcing that z(−δ) = xc2, the following condition on
the quantity δ is found:

1

w

∫ δ

0
dξ

(
ξ

1 + ξ

)γ1/π
(

ξ

δ − ξ

)γ2/π

= r, (5)

r = l2/ l1 = sin γ1/ sin γ2 being the ratio between the wetted lengths of the two sides of
the wedge boundary. By combining the relations (4) and (5), the integral equation for δ is
obtained:
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0
dξξ (γ1+γ2)/π(1 + ξ)−γ1/π(δ − ξ)−γ2/π =

= r

∫ 1

0
dξξ (γ1+γ2)/π(1 − ξ)−γ1/π(δ + ξ)−γ2/π ,

(6)

which has solution δ = γ1/γ2, as is shown in Appendix A.
In order to derive the complex velocity potential, the asymptotic behaviour for |ζ | � 1 of

the function g(ζ ) is deduced, starting from the following expansions:

(ζ − 1)−γ1/π = ζ−γ1/π

[
1 + γ1

π

1

ζ
+ 1

2

γ1

π
(1 + γ1

π
)

1

ζ 2

]
+ O(ζ−3),

(δ + ζ )−γ2/π = ζ−γ2/π

[
1 − γ2

π

δ

ζ
+ 1

2

γ2

π
(1 + γ2

π
)

δ

ζ 2

]
+ O(ζ−3).

In the first expansion, the branch with θ + 2π of the power (ζ − 1)−γ1/π has been considered,
so the branch of the function ζ−γ1/π turns out to be the reciprocal of the one of the power
ζ+γ1/π that appears at the numerator of the function g(ζ ), in Equation (2). By accounting for
the solution of the integral equation (6), the asymptotic expansion of the function g(ζ ) results:

g(ζ ) = 1 + c

ζ 2 + O(ζ−3), (7)

where c = δ(γ1 + γ2)/(2π). From Equation (7), the asymptotic expansion for large |ζ | of the
map z(ζ ) can be evaluated as:

z ∼ l1

w

{
ζ +

∫ ζ

1
dχ [g(χ) − 1]

}
∼ l1

w
(ζ − c

ζ
) + O(ζ−2). (8)

In Equation (8) and in the following, the symbol ∼ means that additional terms, which are
constant with respect to the current variable ζ , are dropped.

The complex potential µ is written as the sum of that of a uniform stream, iV z, and the
potential µr of the fluid motion in the wedge frame of reference. Thus, only the potential µr

has to be determined, which is real for ζ = ξ + i0− with −δ < ξ < +1 and imaginary along
the segments ξ < −δ and ξ > +1. Finally, taking into account the asymptotic behaviour (8)
of the map (3), the relative complex potential µr must behave as −il1V ζ/w for ζ → ∞, in
order to satisfy also the boundary condition along �∞.

The complex potential µr is constructed by introducing the suitable branch of the function
[(1 − ζ )(δ + ζ )]1/2:

h(ζ ) = |1 − ζ |1/2|δ + ζ |1/2ei[π+(θ+2π)+β]/2,

which satisfies the same boundary conditions that hold for µr along the free surface and the
wedge. Moreover, for |ζ | � 1, h(ζ ) behaves as:

h(ζ ) = i(ζ − s) + O(ζ−1), (9)

with s = (1 − δ)/2 = (γ2 − γ1)/(2γ2). Hence, the relative complex potential µr may be
written as µr (ζ ) = −l1V h(ζ )/w, leading to the definition of the potential µ:

µ(ζ ) = V

[
iz(ζ ) − l1

w
h(ζ )

]
, (10)
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Figure 3. Streamlines in the wedge reference system
for the same conditions of Figure 2. A stagnation
point lies on the less inclined side of the wedge and
the stream turns around the apex, thus leading to
the singular behaviour of velocity and pressure at
that point. Note also the clustering of the streamlines
near the two contact points between wedge and free
surface, as induced by the velocity singularities in
those points.

Figure 4. Nondimensional, signed distance σ̃s from
the apex (negative on the left and positive on the
right) of the stagnation point vs. γ2 with γ1 = 10◦,
20◦, . . . , 80◦, for the fluid motion relative to the
wedge. The actual distance σs is given by the value
of σ̃s in figure times l1/100 on the right (σ̃s > 0)

and l2/100 on the left (σ̃s < 0) of the apex.

which has a similarity behaviour with respect to h0. The real part φ of the complex potential
(10) satisfies problem (1).

In Figure 3, the isolines of the relative stream function ψr are shown for the flow induced by
a wedge with γ1 = 20◦, γ2 = 50◦ The presence of a stagnation point on the right side may be
observed, as can be derived by analyzing the velocity field. Actually, from the transformation
(3) and the form (10) of the complex potential, the conjugate (denoted with overbar) of the
complex velocity u in the physical plane is calculated as a function of the transformed variable
ζ :

u(ζ ) = V

[
i + ζ − s

g(ζ )h(ζ )

]
, (11)

which vanishes as ζ−2 for ζ going to infinity, as a consequence of the asymptotic expansions
(7) and (9) for the functions g and h.

The velocity field (11) is singular at the apex due to the fact that, in the wedge frame of
reference, the stream moves around the apex, turning through an angle greater than π , so the
velocity (and the pressure) diverges on the vertex. As noted before, this unphysical behaviour
is related to the neglected viscous effects and may be corrected through a generalization of the
mathematical model, which includes the shedding of vorticity from the apex, as well as the
resulting wake dynamics. The singularities at the contact points, due to the free-surface shape
with φ = 0, are responsible for the formation of thin sprays on the two sides of the impacting
wedge. The flat-free-surface assumption made in this work does not allow to follow the details
of the spray evolution.
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From Equation (11), the velocity field relative to the body exhibits a stagnation point on
the wedge at the point ζ = s + i0−, coinciding with the apex (s = 0) only in the symmetric
case. For asymmetric configurations, the nondimensional, signed (positive on the right and
negative on the left of the apex) distance σ̃s between the apex itself and the stagnation point
is drawn, in percent of the wetted length of the corresponding side, versus γ2 in Figure 4. It
appears that the stagnation point cannot move beyond half the length of the side on which it
lies and that, for very sharp wedges, this point is very close to the apex.

The ratio p between pressure and density on the wetted part of the wedge follows from the
Bernoulli equation, starting from the potential (10) and the velocity (11). In the transformed
plane, the pressure on the body turns out as

p(ξ) = p∞ + (V̇ + V 2

h0
)

{
y + l1

w
[(1 − ξ)(δ + ξ)]1/2

}
+

+V 2

[
−1

2
± (±ξ)−(γ1+γ2)/π (ξ − s) sin γ1

(1 − ξ)1/2−γ1/π(δ + ξ)1/2−γ2/π
+

−1

2

(±ξ)−2(γ1+γ2)/π (ξ − s)2

(1 − ξ)1−2γ1/π(δ + ξ)1−2γ2/π

]
,

(12)

where the upper signs hold on the right (0 < ξ < +1) and the lower ones on the left (−δ <

ξ < 0) of the wedge apex. Due to the singularity in the velocity field, the pressure on the
wedge also exhibits a singular behaviour at the apex and at the two contact points xc1 and xc2.
In particular, since s = 0 in the symmetric case, the singularity of the pressure at the apex
occurs only in the asymmetric case, highlighting a deficiency of the present mathematical
modelling of the flow, which does not consider flow separation taking place at that point. In
the following this singularity is removed, by accounting for the vortex shedding from the apex,
as discussed in Section 3. In Figure 5, for the same flow conditions of Figure 3, p−p∞ on the
wedge is drawn versus the signed curvilinear abscissa σ along the wedge, which is negative
to the left and positive to the right of the apex. Almost throughout the wedge surface, the
pressure is larger than p∞, which corresponds to the level 0 in the figure, while, close to the
contact points xc1 and xc2 and to the apex, the pressure quickly falls to −∞. In Section 4 it is
shown that the presence of a wake shed from the wedge apex slightly modifies the pressure
field in the vicinity of the apex, replacing the singularity at the apex with a finite depression,
the intensity and the extent of which depend on the wedge geometry and motion.

2.2. POTENTIAL AND VELOCITY FIELDS NEAR THE SINGULAR POINTS

In this section, the behaviour of the map (3) and those of the complex potential (10) and
velocity field (11) near the singular points of the transformation itself are investigated. The
map (3) has three singular points located at ζ = 0, ζ = 1, and ζ = −δ. The first singular
point, ζ = 0, is the more relevant one for the present analysis: the derivative dz/dζ = z′ = g

vanishes and then the velocity (11) diverges, if s �= 0.
In order to evaluate the velocity behaviour near the wedge apex, the variable in the trans-

formed plane is written as ζ = 0 + ε, with |ε| 
 1. With this assumption, it may be shown
that the map z(ζ ) behaves as:

z(0 + ε) � −ih0 + π

γ1 + γ2 + π

l1

w
δ−γ2/πe−i(γ1+2γ2)ε1+(γ1+γ2)/π, (13)
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Figure 5. Distribution of p − p∞ on the wedge vs.
the signed curvilinear abscissa σ for the flow due to
the motion with h0 = 1, V = 1 and V̇ = 0 of the
wedge in Figure 2.

Figure 6. Image in the τ -plane of a cartesian grid
in the ζ -plane, obtained by dividing the segments
(−1·4, 2) and (−1·301, 0·001) along the axes ξ

and η in 120 and 60 intervals, respectively. The
geometrical parameters are the same as in Figure 2.

from which the derivative of dζ/dz(ζ ) becomes:

dζ

dz
(0 + ε) � w

l1
δγ2/πei(γ1+2γ2)ε−(γ1+γ2)/π, (14)

where terms that vanish as ε → 0 have been omitted. This latter estimate points out the
divergence of the derivative dζ/dz in ζ = 0, which leads to a corresponding divergence of the
velocity field u(ζ ) around the apex of the body, in asymmetric conditions. The behaviour of
the complex potential follows from Equation (10) as:

µ(0 + ε) ∼ V h0
1√
δ

(
− s

w sin γ1

)
ε, (15)

where terms of order ε(γ1+γ2)/π+1 have been omitted. In this expansion, ε is multiplied by
V h0, which depends only on the wedge motion, and by the coefficient j/

√
δ, j being related

to the deadrise angles γ1 and γ2 by the following equation:

j = − s

w sin γ1
. (16)

This parameter gives the influence of the wedge shape on the vorticity production from the
apex; see Equation (25) below. From equation (15), by using the estimate (14), the expansion
of the conjugate of the complex velocity in the physical plane as a function of ζ results in:

u(0 + ε) � V
[−sei(γ1+2γ2)δγ2/π−1/2ε−(γ1+γ2)/π + i

]
,

where again terms of order ε have been omitted. As mentioned above, in the asymmetric case
(s �= 0) the velocity diverges at the apex, while it goes to −iV in the symmetric one (s = 0).
When the expansion of the map (13) is taken into account, the velocity diverges as:

(z + ih0)
−(γ1+γ2)/(γ1+γ2+π),



Water impact of an asymmetric floating wedge 27

for z → −ih0.
The discussion of the behaviour about the right contact point xc1 is carried out by assuming

ζ = 1 + ε, with |ε| 
 1. The map z(ζ ) behaves as:

z � xc1 + l1c
′ε(π−γ1)/π , (17)

where c′ = (δ + 1)−γ2/ππ/[(π − γ1)w], where terms of order higher than ε3/2 have been
omitted. To the same order of approximation, the corresponding estimate of the complex
potential becomes:

µ(1 + ε) ∼ iV h0

[
−

√
δ + 1

w sin γ1
ε1/2 + c′

sin γ1
ε(π−γ1/π

]
. (18)

An important consequence of the expansions (17) and (18) is that the velocity diverges as:

(z − xc1)
−(π−2γ1)/[2(π−γ1)],

for z → xc1. A similar behaviour, replacing xc1 and γ1 with xc2 and γ2, is found at the contact
point on the left side.

3. A model for the vorticity production from the apex

A classical discrete model, able to describe the vortex shedding taking place at the apex of
asymmetric wedges [22], is here particularized within the framework of the above conformal-
mapping technique. At fixed intervals of time, the vorticity shed from the apex is concentrated
in point vortices (Kutta condition), which are placed at a given position, close to the apex and
into the fluid domain [25]. During the wedge entry, the point vortices interact with each other
and with the body, thus leading to the formation of a wake. It is worth recalling that the basic
hypothesis of the present study lies in the flat-free-surface assumption, that is the free surface
is not modified by the local velocity field. Under this assumption, Sedov’s solution (11), with
the actual values of h0(t) and V (t), is used to evaluate the velocity field induced by the wedge
and the free surface on the wake.

In order to significantly simplify the complex potential (11), a new conformal mapping,
from the ζ -plane to a τ -plane, is introduced as follows:

τ (ζ ) = 2

δ + 1
[ζ − s − ih(ζ )], (19)

where τ = χ + iω. The transformation (19) maps the curve ζ = ξ + i0− with −δ < ξ < +1
onto the lower half unitary circle having its center at the origin τ = 0 and the segments with
ξ > 1 and ξ < −δ onto the ones τ = χ + i0− with χ > 1 and χ < −1. In Figure 6, an
example of the action of the map (19) on a Cartesian regular grid in the ζ -plane is shown.

The map (19) is easily inverted as:

ζ = (δ + 1)τ 2 − 2(δ − 1)τ + (δ + 1)

4τ
, (20)

which, for large |τ |, implies ζ ∼ (δ + 1)τ/4 and, from the asymptotic expansion (8), z ∼
l1(δ + 1)τ/(4w). Note that, from Equations (19) and (20), τ (s) = −i or ζ (−i) = s, so that
the transformation (19) always maps the stagnation point onto the point τ = i. Furthermore,
the wedge apex ζ = 0 goes to the point
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p = δ − 1

δ + 1
− i

2
√

δ

δ + 1
= eiϕg (21)

of the τ -plane, where ϕg ∈ (π, 2π). From Equation (21), it follows that p = −i only in the
symmetric case, for which δ = 1.

With the help of the transformation (20), the complex potential (11) becomes:

µ(τ) = iV

{
z[ζ(τ)] − l1

w

δ + 1

4

τ 2 − 1

τ

}
. (22)

Such a form is particularly useful for analyzing some of the details of the flow in the frame
of reference attached to the body, where the complex potential µr is recovered from Equa-
tion (22) by omitting the first term in parentheses, thus having:

µr (τ ) = −iV
l1

w

δ + 1

4

τ 2 − 1

τ
.

From this expression, µr turns out to be the same as that of a uniform stream with asymp-
totic velocity iV l1(δ + 1)/(4w) impinging on the unit circle. Hence, by exploiting the circle
theorem, when a point vortex with circulation �v is introduced in the point τ = τ v, the
contribution of the vortex itself and of its image have to be added to the original velocity
potential, thus yielding

µ(τ) = iV

{
z[ζ(τ)] − l1

w

δ + 1

4

τ 2 − 1

τ

}
+

+ �v

2π i

[
log(τ − τ v) − log(τ − 1

τ v)

]
.

(23)

An important consequence of Equation (23) is that the presence of a point vortex in the flow
field does not change the asymptotic behaviour of the velocity field, which still vanishes as
τ−2 (or ζ−2), for τ (or ζ ) going to infinity.

To account for the vorticity generation at the apex of asymmetric wedges, a discrete model
is used, which consists in the introduction of a new (nascent, in the following) vortex in
a neighbourhood of the apex at each time step. At the initial time, the position τ 1 and the
intensity �1 of the first nascent vortex have to be chosen in a way such that the velocity
singularity at the apex disappears. When the complex potential µ(0 + ε), with |ε| 
 1, is
written as a power series in ε, in order to obtain a velocity field u = dµ/dζ · dζ/dz regular
at the apex, the first term of the series must be proportional to ε2, thus avoiding the singular
behaviour due to the derivative (14) of the mapping function. Moreover, let τ = p + w, with
|w| 
 1, from Equation (20) follows:

ε � −i
√

δw/p,

where terms of order w2 have been omitted. As a consequence, in order to avoid terms of
order ε in the expansion of µ(0+ε), terms of order w have to be avoided in the corresponding
expansion of µ(p + w). When the expansion (15) and the above relation between ε and w are
used, the complex potential (23) can be expanded in a neighbourhood of the point τ = p as
follows:

µ(p + w) ∼
[
−ipJ + �1

2π i

(
1

p − τ 1
− 1

p − 1/τ 1

)]
w, (24)
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neglecting terms of order w2, where J = V h0j is a real quantity. The second term in paren-
theses is just the conjugate of the velocity induced by the point vortex on the point p of the
cylinder which, thanks to the contribution of the image, is always proportional to −ip, for any
choice of τ 1. For this reason, the nascent vortex can be placed in an arbitrary position close
enough to the apex. In the present calculations, the position of the nascent vortex is chosen as
τ 1 = (1 + d)p, d being an arbitrary small positive number. The effects of the choice of d on
the flow field near the apex are discussed in Appendix B. By imposing that the term of order
w in the power series expansion of µ(p + w) vanishes, from Equation (24) �1 follows as:

�1 = π J
2d

d + 2
= π

2
V h0

δ − 1

w sin γ1

2d

d + 2
, (25)

where the definition of j (16) is used. Of course, the circulation (25) vanishes for symmetric
wedges, i.e., for δ = 1. A more careful analysis of expression (25) reveals that the circulation
of the nascent vortex is influenced by three factors: (i) the velocity of the wedge, (ii) its
geometry, given by the apex depth h0 and, via δ and w, by the two deadrise angles γ1 and
γ2, and (iii) the distance d where the vortex is generated in the τ -plane. This latter factor may
appear quite arbitrary, d being a small number which can be assigned without any constraint.
Nevertheless, for small values of d (of order 10−3 in the present calculations), it follows that
2d = (d + 2) � d, that is the density of circulation shed into the wake portion lying between
the apex and the point of generation, i.e., �1/d, is quite independent of d. Hence, because the
self-induced dynamics of the wake depends only on the density of circulation spread on the
wake itself, different values of distance d, provided reasonably small, do not affect the wake
motion.

All the above only holds at the initial instant (t = 0), when no other vortices are present in
the flow field. At the time t = k�t , where k is a positive integer, there are k vortices in the field
and their contribution to the complex potential must be accounted for, in order to consistently
evaluate the circulation of the nascent vortex. In this way, a fourth factor, which influences
the vorticity production, comes into play: the effect of the wake itself, which is responsible
for a rather complicated feedback between vortex shedding and wake dynamics. The nascent
(k + 1)-th vortex is generated at the same position of the first one, i.e., τ k+1 = (1 + d)p is
assumed, but in this case the expansion (24) of the complex potential µ(p + w), at the first
order in w, takes the form:

µ(p + w) ∼
[ −ipJ︷ ︸︸ ︷

−ipV h0j + 1

2π i

k∑
m=1

�m

(
1

p − τm

− 1

p − 1/τm

)
+

+�k+1

2π i

(
1

p − τ k+1
− 1

p − 1/τ k+1

)]
w,

which defines implicitly the new real quantity J . As done for the first nascent vortex, in the
above expansion the term in w must vanish to provide a finite value of the velocity at the
apex, still obtaining �k+1 = πJ2d/(d + 2), but in terms of the new value of J . The above
procedure, which fixes the position of the nascent vortex and evaluates its circulation in such a
way that the velocity remains finite on the wedge apex, is known as the fixed position method
to enforce the Kutta condition [25].

The vortex dynamics is integrated in time in the physical plane. Toward this aim, the
complex velocity is modified in order to exclude the self-induced contribution of each vortex.
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Let z′ = dz/dζ and ζ ′ = dζ/dτ , for a point vortex located at τ = τ v (which corresponds to
the point ζ v) the term:

lim
τ→τ v

(
1

τ − τ v

dτ

dz
− 1

z − zv

) = −1

2

ζ ′2(τ v)z
′′(ζ v) + ζ ′′(τ v)z

′(ζ v)

[z′(ζ v)ζ
′(τ v)]2

is added to the conjugate of the velocity in the physical plane (Routh theorem). As a con-
sequence, the motion of the j -th vortex (for j = 1, . . . , k + 1) between k�t and (k + 1)�t is
simulated by integrating the following equation:

ż =
{

iV

[
z′(ζ j )ζ

′(τ j ) − lj

w

δ + 1

4

τ 2
j + 1

τ 2
j

]
+

+ 1

2π i

k+1∑
m=1
m �=j

�m

τ j − τm

− 1

2π i

k+1∑
m=1

�m

τ j − 1/τm




1

z′(ζ j )ζ
′(τ j )

+

− �j

4π i

ζ ′2(τ j )z
′′(ζ j ) + ζ ′′(τ j )z

′(ζ j )

[z′(ζ j )ζ
′(τ j )]2

.

(26)

In Equation (26), in order to avoid numerical instabilities, each term in the first sum, which
gives the velocity induced by the other vortices in the flow field on the j -th one, is desingu-
larized, replacing 1/(τ j − τm) by (τ j − τm)/(|τ j − τm|2 + ε), where ε is a small positive
number.

4. Numerical results

Numerical simulations of the water-entry flow of asymmetric wedges are performed for sev-
eral values of the deadrise angles γ1 and γ2. As already stated, this study is carried out within
the framework of a flat-free-surface assumption. This hypothesis, although drastically simpli-
fying the evaluation of the velocity field, is only valid for a wedge displacement much smaller
than the initial apex submergence. For larger values, the mutual interaction between the free
surface and the wake is expected to play a very important role.

The wedge, assumed to be at rest initially and floating on an undisturbed liquid surface, is
progressively accelerated so that the apex submergence varies as:

h0(t) = h0(0) + V0t̃

(
t

t̃
− 1 + e−t/t̄

)
, (27)

where t̃ is a suitable small time. The time derivative of h0(t) in Equation (27) approaches a
Heaviside function of amplitude V0, as t̃ → 0. The initial apex submergence h0(0) and the
velocity V0 are used as length and velocity scales, respectively, leading to an implicit definition
of the time scale as h0(0)/V0. In this scale, the time t̃ is fixed at 10−3. In the numerical
calculations, the integration in time is performed with a fixed step �t = 10−5, which is found
suitable to provide an accurate description of the wake production and of its dynamics during
the transient period. Finally, in order to account for the larger and larger vorticity scales taking
place during the motion, the desingularization parameter ε is assumed to be linearly growing
in time as ε(t) = ε0 + ε̇0t . The values of the two constants ε0 and ε̇0 depend on the parameters
of the simulation, and are usually of the order of 10−7 and 10−4, respectively.
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Figure 7. Wake configurations at time t = 0·02 for
different values of γ1, with γ2 = 40◦. On the left,
wake and body are drawn in an enlarged view around
the wake, while, on the right, the corresponding
relative streamlines are added.

Figure 8. As in Figure 7: wake configurations for the
wedges with different values of γ1, with γ2 = 60◦.

Without loss of generality, in the present calculations the angle γ1 is assumed smaller than
γ2. In Figures 7–9 some results are shown when γ1 is varied for fixed values of γ2, taken to be
40◦, 60◦ and 80◦. Results are presented in terms of wake geometry, on the left, while the iso-
contours of the relative stream function ψr = Im(µr ) are added, on the right, in order to help
in the understanding of the wake dynamics. The numerical solution shows that the wake grows
in time, leading to the formation of a quasi-steady vorticity structure, which remains close to
the apex on the more inclined part of the wedge. From the analysis of the stream-function
fields, the occurrence of a recirculating region, always encompassing the corresponding wake,
can be recognized. This region gives rise to a stagnation point, located on side 2, just at the
end of the recirculating bubble. There are two other stagnation points: one, due to the Kutta
condition, is located just at the apex and another lies on the less inclined side of the wedge
(side 1) and is very close, at the initial stage at least, to the one which exists without the wake
(see Figure 3). Due to the scales of the figures, this latter stagnation point does not appear in
Figures 7–9, except for the last case (Figure 9f ). In the frame of reference attached to the
wedge, the flow coming from the region between the right stagnation point and the apex turns
around the recirculating region, up to reaching the most inclined side of the wedge, thus finally
moving toward the free surface. In this way, the singularities in the velocity (11) and in the
pressure (12), which appears at the apex in the absence of the wake, are removed, leading to a
more physical description of the field around the wedge.

For the same flow conditions as shown in Figures 7–9, the total circulation of the wake �w

and its time derivative �̇w are computed and plotted in Figure 10. Since the circulation �k+1
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Figure 9. As in Figure 7: wake configurations for the
wedges for different values of γ1, with γ2 = 80◦.

Figure 10. Circulation (right) and its time derivative
(left) shed into the wake for several values of γ2. The
angle γ1 grows, with a step of 10◦, from the lowest
to the uppermost curve.

of the (k + 1)-th point vortex is proportional to �̇w at the corresponding generation time k�t ,
some interesting insights about the wake dynamics can be derived from the time history of �̇w,
In all calculations shown here, �̇w, which is always negative, suddenly reaches a minimum and
grows subsequently. Hence, the core of the wake is also the region with the larger vorticity
density and then it drives the roll-up of weaker vortices shed at a later stage. As a consequence,
a relevant stretching is experienced by the intermediate part of the wake, and this makes the
integration in time rather challenging, requiring very small time steps to preserve the stability
of the numerical calculations. When the long time behaviour of �̇w is observed, a conjecture
predicts that �̇w approaches a constant value. However, it is not completely clear whether
such a limit value is negative or zero. This question appears to be relevant in connection
with the understanding of the behaviour in time of the stagnation points on the wedge, which
is addressed below. At present, the occurrence of such an asymptotic stage for the present
mathematical model of the flow is not supported by the numerical results.

The time behaviour of the total circulation �w, whose absolute value grows monotonically,
is responsible for a corresponding growth of the distance |σ2| between the apex and the stag-
nation point on side 2, along which the wake lies. For the same conditions as in Figures 7–9,
the time histories of the signed distance σ2 (negative, when the stagnation point is at the left
of the apex) is shown in Figure 11. The behaviour of this distance gives also a measure of
the growth of the recirculating region in time which, however, covers only few percents of the
wetted length l2. Concerning the position of the right stagnation point, located at a distance σ1

from the apex, the relative displacement (σ1 − σ 0
1 )/ l1 with respect to its position σ 0

1 without
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Figure 11. Signed distance σ2 of the stagnation point
on side 2 from the apex (left) and relative displace-
ment (σ1 − σ 0

1 )/ l1 of the stagnation point on side 1
with respect to its position without wake (right). Res-
ults for three different values of γ2 are shown, while
the angle γ1 grows from the lowest to the uppermost
curve, with a step of 10◦.

Figure 12. Pressure along the wedge vs. the signed
curvilinear abscissa σ (negative on the left side and
positive on the right one) along the body with (solid
line) and without (dashed) the wake. The pressure is
assumed zero at infinity. The angle γ2 is fixed at 40◦,
while γ1 = 10◦ in the left column and γ1 = 30◦ in
the right one.

wake is shown vs. time on the right-hand side of the same figure. It is worth noting that, at
least for the initial stage of the motion, the distance σ1 grows, also in the presence of the wake,
due to the monotonic growth of the apex submergence h0, given by Equation (27), and to the
similarity of the conformal map (3) with respect to h0. However, Figure 11 shows that, in the
presence of the wake, the ratio σ1/ l1 is always smaller than σ 0

1 / l1, which is constant in time.
To evaluate the pressure field, starting from Equation (12), which is valid in absence of

the wake, an additional term, accounting for the vorticity dynamics, is introduced into the
unsteady contribution. Hence, at the time t = k�t , where k is a positive integer, the time
derivative of the complex potential becomes:

∂tµ(τ ) = i

(
V̇ + V 2

h0

)(
z − h0

δ + 1

4 w sin γ1

τ 2 − 1

τ

)
+

− 1

2π i

k∑
m=1

�m

(
τ̇m

τ − τm

+ τ̇m/τ 2
m

τ − 1/τm

)
,

where the time derivative of the k-th vortex position in the τ -plane, τ̇ k, is numerically eval-
uated by a first-order backward derivative. In Figure 12 the pressure distribution along the
wedge with and without the wake is drawn versus the signed curvilinear abscissa σ in a small
neighbourhood of the apex, for the flows with γ2 = 40◦, γ1 = 10◦ (left column) and γ1 = 30◦
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(right column). It can be seen that the singular behaviour at the apex, occurring in the absence
of the wake, disappears and is replaced by a concentrated depression. The extension of such
a depression is comparable with the size of the recirculating region, as may be verified by
comparing Figure 12c with Figure 7d and Figure 12f with Figure 7f . The intensity of the
wake-induced depression is larger for the most asymmetric conditions, being roughly in the
same ratio as the shed circulations, as can be verified by considering the bottom and the
top curves in Figure 10d. The time behaviour of the amplitude of such a depression is not
monotonic, as can be seen by comparing the three rows in Figure 12. Finally, one may also
note the abrupt pressure change about σ = 0, due to the wake crossing.

5. Conclusions and perspectives

The flow generated by the water entry of a two-dimensional asymmetric wedge, originally
floating on a still liquid surface, has been analyzed within the framework of a potential-flow
assumption. By focusing attention on the early stage of the flow, free-surface deformations
have been neglected, thus allowing to use a generalization of Sedov’s solution for the cor-
responding potential and velocity fields. Owing to the asymmetry, a velocity singularity has
been found at the apex, indicating that vortex shedding occurs locally. This deficiency in
the mathematical model has been removed by introducing into the flow field point vortices,
circulations of which have been assigned in such a way that the velocity singularity at the apex
disappears.

For a given law of the entry velocity, the wake generation and its dynamics have been
numerically simulated for several combinations of the deadrise angles of the two sides of the
wedge and results have been presented in terms of stream function and pressure distribution
along the body. The occurrence of a recirculating region has been found, the extension of
which grows in time.

Some unresolved questions still remain, in particular with regard to the long-time beha-
viour of the stagnation points located on the body. For instance, it is not clear if the stagnation
point located along the less inclined part of the wedge moves up to the apex and then into the
flow field, as can be argued by an intuitive picture of the flow.

An important problem to be addressed in the future concerns the generalization of the
present mathematical model, to account for the actual free-surface deformations. Depending
on the geometry and on the flow conditions, the mutual interaction between free surface and
the vortex wake can be responsible for the occurrence of ventilation and/or flow detachments
from the solid body, leading to significant changes in the pressure distribution along the wetted
part of the wedge.

Appendix A. Evaluation of the parameter δ

In the following, the parameter δ is determined analytically starting from an evaluation by
series of the integrals on the left- and right-hand sides of Equation (6). This is achieved by
letting v′ = 1 − ξ/δ and v′′ = 1 − ξ in the integrals on the left- and right-hand sides of
Equation (6), respectively, yielding
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δ(
δ

1 + δ
)γ1/π

∫ 1

0
dv′v′−γ2/π(1 − v′)(γ1+γ2)/π (1 − δ

1 + δ
v′)−γ1π =

= r(
1

1 + δ
)γ2/π

∫ 1

0
dv′′v′′−γ1/π(1 − v′′)(γ1+γ2)/π (1 − 1

1 + δ
v′′)−γ2/π ,

(A1)

in which δ/(1 + δ) and 1/(1 + δ) are both smaller that 1. Let g1 = γ1/π < 1/2 and g2 =
γ2/π < 1/2, by introducing the two coefficients a1(δ) = 1/(1 + δ) and a2(δ) = δ/(1 + δ),
Equation (A1) becomes:

a
g1+1
2 F (g2, g1; a2) = ra

g2+1
1 F (g1, g2; a1), (A2)

where the function

F (g1, g2; a) =
∫ 1

0
dvv−g1(1 − v)g1+g2(1 − av)−g2 , (A3)

is introduced. Note that the integrand in Equation (A3) is singular at v = 0, but is integrable,
since g1 < 1/2. The function (A3) may be evaluated by expanding in Taylor series about
v = 0 the factor (1 − av)−g2 :

F = �(g1 + g2 + 1)

�(g2)

∞∑
k=0

ak

k!
�(k + 1 − g1)

(k + 1 + g2)(k + g2)
. (A4)

The use of the expansion (A4) in Equation (A2) leads to the following relation:

1

�(g1)

∞∑
k=0

�(k + 1 − g2)

(k + g1)(k + 1 + g1)
a

k+1+g1
2 =

= r

�(g2)

∞∑
k=0

1

k!
�(k + 1 − g1)

(k + g2)(k + 1 + g2)
a

k+1+g2
1 ,

(A5)

which is a transcendental equation in δ, via a1(δ) and a2(δ). Equation (A5) is solved numer-
ically by means of a Newton method, for several values of γ1 and γ2. The results suggest the
simple relation δ = γ1/γ2: here this relation is analytically derived.

Equation (A5) may be rewritten as:

sin γ2
�(1 − g2)

�(g1)

[
1

g1(1 + g1)
a

1+g1
2 +

+
∞∑

k=1

1

k!
(k − g2)(k − 1 − g2) · . . . · (1 − g2)

(k + g1)(k + 1 + g1)
a

k+1+g1
2︸ ︷︷ ︸

S2(a2)

]
=

= sin γ1
�(1 − g1)

�(g2)

[
1

g2(1 + g2)
a

1+g2
1 +

+
∞∑

k=1

1

k!
(k − g1)(k − 1 − g1) · . . . · (1 − g1)

(k + g2)(k + 1 + g2)
a

k+1+g2
1︸ ︷︷ ︸

S1(a1)

]
,

(A6)
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in which the position r = sin γ1 sin γ2 has been used. In the above new form of Equation (A5),
the series S2 and S1 can be explicitly summed. The series S2 in the left-hand side of Equa-
tion (A6) (the one in the right may be handled in the same way by exchanging the subscript 1
with 2) has a second derivative with respect to a2 equal to:

d2S2

da2
2

=
∞∑

k=1

1

k!(k − g2)(k − 1 − g2) · . . . · (1 − g2)a
k−1+g1
2

= a
−1+g1
2

[
1 +

∞∑
k=1

1

k!
dk

dak
2

(1 − a2)
−1+g2 |a2=0a

k
2

]
− a

−1+g1
2

= a
−1+g1
2 (1 − a2)

−1+g2 − a
−1+g1
2 ,

leading to the differential problem:


d2S2

da2
2

= a
−1+g1
2 (1 − a2)

−1+g2 − a
−1+g1
2

S2(0) = dS2

da2
(0) = 0,

which gives the following expression of the sum S2:

S2(a2) = − 1

g1(1 + g1)
a

1+g1
2 +

∫ a2

0
dv′

∫ v′

0
dv′′v′′−1+g1(1 − v′′)−1+g2 . (A7)

Equations (A7) and the analogous one for S1 are introduced in relation (A6). Both sides of the
resulting equation are multiplied by �(g1)�(g2), so that from the relation �(g1)�(1 − g1) =
π/ sin γ1 and the corresponding one for g2, Equation (A6) is finally rewritten as:∫ a2

0
dv′

∫ v′

0
dv′′v′′−1+g1(1 − v′′)−1+g2 =

∫ a1

0
dv′

∫ v′

0
dv′′v′′−1+g2(1 − v′′)−1+g1,

which can be rearranged in the form:∫ 1

0
dṽ

∫ ṽ

0
dv′′v′′−1+g1(1 − v′′)−1+g2 − a1B(g1, g2) = 0,

where B is the Beta function. An integration by parts in the outer integral finally leads to:

B(g1, g2)

(
δ

1 + δ
− γ1

γ2 + γ1

)
= 0,

from which it follows δ = γ1/γ2.

Appendix B. Local changes on the low field induced by the nascent vortex

When the position of the first nascent vortex is assumed to be given by τ 1 = (1 + d)p, its
circulation �1, Equation (25) may be also deduced in a more suggestive way, which enables
the analysis of some details of the flow field in a neighbourhood of the apex. Also an empirical
criterion for the choice of the distance d follows from that discussion. Actually, in the wedge
frame of reference, the complex potential µr , in presence of the nascent vortex of circulation
�1 at τ = τ 1, may be written as:
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Figure 13. Behaviour of the roots with a physical meaning of Equation (B4) for γ1 = 20◦, γ2 = 50◦ and d

going from 0 to 0·5, in the τ -plane (a) and in the physical z-plane (b). Symbols are placed along the paths, every
�d = 1/20.

Figure 14. Streamlines through the extremal points in presence of the nascent vortex (square symbol), for the in
the wedge reference system with γ1 = 20◦, γ2 = 50◦ and h0 = 1. A sub-critical field (d = 0·24 < dcr � 0·25)
and a super-critical one (d = 0·27 > dcr ) are shown in (a) and (b), respectively. While in (a) there are three
stagnation points all lying on the wedge (one is always located at the apex), in (b) there are only two stagnation
points, one at the apex and the other one into the field.

µr (τ ) ∝ −i

{
τ − 1

τ
+ c′′

[
log(τ − τ 1) − log

(
τ − 1

τ 1

)]}
, (B1)

where c′′ = 2w�1/[π(δ + 1)l1V ] is a real constant. Note that the case in which the point
vortex is absent can be obtained by letting τ 1 = 1/τ 1, i.e., d = 0. When Equation (25) is used
for �1, the constant c′′ becomes

c′′ = δ − 1

δ + 1

2d

d + 2
. (B2)

When τ 1 = (1 + d)p is inserted into Equation (B1), the extremal points of the complex
potential µr (τ ), i.e., the points in which dµr/dτ vanishes, are recovered by the solution of the
following fourth-order algebraic equation:
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τ 4 − d2 + 2d + 2

d + 1
p τ 3 +

[
1 + c′′ d(d + 2)

d + 1
p + p2

]
τ 2+

− d2 + 2d + 2

d + 1
p τ + p2 = 0,

(B3)

which, for each d > 0, has always one root at the point τ = p, i.e., on the wedge apex, if and
only if the constant c′′ is that given by Equation (B2). This is another way of proving that, if
the nascent vortex is placed at τ 1 = (1 + d)p, the circulation given by Equation (25) is the
only value leading to a finite velocity at the wedge apex, at the initial time.

The other three roots of Equation (B3) are solution of the equation:

τ 3 − d2 + d + 1

d + 1
p τ 2 + d2 + d + 1

d + 1
τ − p = 0; (B4)

depending on the value of d and of p, only one or two roots of Equation (B4) have a meaning
for the present analysis, the third one being outside the image of the flow field in the τ -plane.
The behaviour of these roots versus d in the τ -plane and in the physical one are shown in
Figure 13, for an asymmetric wedge with γ1 = 20◦, γ2 = 50◦ and h0 = 1. The two roots start,
for d = 0, one from the body apex and the other from the stagnation point in the absence
of the nascent vortex. As d grows, they move along the body, until a critical value dcr is
reached, at which the roots merge. For distances d larger than the critical value, only one root
of Equation (B4) maintains a physical meaning and is located outside the body.

With regard to the flow in a frame of reference attached to the wedge, in Figure 14 the
streamlines through the extremal points are drawn, for the same flow conditions of Figure 13,
in the case d < dcr and d > dcr , respectively. For subcritical distances (Figure 14a), a recircu-
lating region exists along the right-hand side of the wedge contour. For supercritical distances
(Figure 14b), this region detaches from the body contour and moves below the wedge. An
empirical criterion adopted to assign the distance of generation is that d must be smaller than
dcr , in order to avoid the presence of an artificial stagnation point into the flow field, close
to the apex. It can be shown that the critical distance dcr reduces together with the degree of
asymmetry, so the above condition becomes more and more restrictive for γ1 approaching γ2.
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